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Preliminary analysis of the 10,10,0 rocking curve 
shown in Fig. 2 indicates a scattering factor per atom 
of 0.83 + 0.02 e. At present the precision of 
measurement is not limited by the 10,10,0 measure- 
ment itself but by small, and so far unexplained, 
deviations between theoretical and experimental rock- 
ing curves for the lower-order Bragg reflections which 
we use to determine the crystal thickness using the 
known values of the X-ray optical constants 
(Tanemura & Kato, 1972; Aldred & Hart, 1973a,b). 
When this problem has been resolved we anticipate that 
the high-order scattering factors will be determined to 
0.1% or so. At that precision not only the core 
scattering itself but also the temperature variation of 
the Debye-Waller factor becomes theoretically in- 
teresting. Further work is in progress. 

We are grateful to R. Teworte for a copy of his 
Fortran program by which the rocking curves have 

been calculated and to the Conselho Nacional de 
Pesquisas do Brazil for the award of a postdoctoral 
scholarship (to CC). 
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Abstract 

The importance of carrying out TDS corrections is 
emphasized. Their relative effect on the derived 
temperature parameter values is discussed and shown 
to rely primarily on the experimental conditions and 
not on the softness of the crystal. 

1. Introduction 

In accurate analyses of charge density distributions 
from X-ray diffraction data there has recently been a 
tendency to utilize shorter wavelengths of X-rays such 
as Ag Ka radiation to improve the resolution of charge 
density maps synthesized by Fourier methods from 
observed X-ray data. Such studies clearly require 
correction for thermal diffuse scattering (TDS) contri- 
butions to the Bragg peaks since these often amount to 
more than 3 5 %. 

The consequences of the neglect of TDS correction 
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University, Chikusa-ku, Nagoya 464, Japan. 
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on structure analysis have been discussed by Harada & 
Sakata (1974) on the basis of their general formalism of 
TDS correction. They predicted that while the position 
parameters are little affected, thermal parameters are 
modified in such a way that the principal axes of the 
thermal ellipsoids change their directions. Further- 
more, it was emphasized that TDS correction was 
particularly important for soft materials because in this 
case the correction factor is larger. This statement, 
however, was not intended to imply that it is unnec- 
cessary to correct for possible TDS if the crystal is 
sufficiently hard. It will in fact be shown that the 
relative reduction of the temperature parameters due to 
neglect of TDS correction is almost the same for any 
crystal, largely independent of its hardness and 
depending mainly on the experimental conditions under 
which the Bragg intensities were measured: the size and 
shape of the counter aperture, the scan width, the 
wavelength of the radiation used and the unit-cell 
dimension of the crystal. 

In this paper we discuss this problem theoretically on 
the basis of the formalism of Harada & Sakata (1973, 
1974) and then endeavour to test our findings in four 
different cases. 

© 1983 International Union of Crystallography 
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2. The effect of  TDS on the temperature parameters 

Within the framework of kinematical scattering theory, 
the integrated Bragg intensity I(obs) from an ideal 
mosaic single crystal is given by 

I(obs) --- (1 + 5-5')I(B), (1) 

where I(B) is the contribution from true Bragg 
scattering, 5I(B) is the contribution from the TDS 
under the Bragg peak and 5' I(B) is the TDS already 
subtracted in the course of background correction. The 
correction factor 5 is expressed in quadratic form in 
terms of the Miller indices h, k and l, provided that the 
TDS which contributes to the integrated Bragg inten- 
sity consists of only one-phonon scattering, 

5 = hAI3h, (2) 

where AI3 is the symmetric TDS tensor, representing 
anisotropy of the TDS in reciprocal space and h is a 
column vector whose elements are h, k and l. Since 5' is 
of the same form as 5, (1) can be rewritten as 

I(obs) = (1 + ks) I(B), (3) 

where k is a proportionality constant. Although the 
value of k has as. yet not been unequivocally deter- 
mined, two values, 0.74 and 0.67, have been proposed 
by Harada & Sakata (1973)* and Willis (1969), 
respectively. 

Let us compare the situations with and without TDS 
corrections. Since in both cases the integrated inten- 
sities are treated as proportional to the square of the 
structure factors, we have 

I(obs)= sl~ f~ exp(-werr) exp(2zcih.r:n')[2 (4) 

true I(B)=s' f~exp(-wt~"e)exp(2~ih.r~ ) ,  (5) 

where f~ is the atomic scattering amplitude of the xth 
err and err represent the exponent of the atom, w~ r~ 

temperature factor and the position vector for the Kth 
atom obtained from the data which has not been 
corrected for TDS, respectively (we have omitted the 

true and r TM Lorentz and polarization factors), w~ are 
values obtained from the data corrected for TDS. The 
scale factors are denoted by s and s'. As is well known, 
w~ is expressed in terms of Miller indices in a quadratic 
form similar to (2), 

w~ = fi13~ h, (6) 

where 13~ is the temperature-parameter tensor whose 
form is uniquely assigned if the symmetry of the xth 
atomic site is specified in the limit of the harmonic 
approximation of thermal vibration. Such a tensor 

form, however, breaks down if anharmonicity is 
included. We continue our discussion of the problem 
within the harmonic approximation. 

Although the TDS correction factor 5 may exceed 
0.3 for higher-order Bragg reflections, we use the 
approximation 

1 
- exp (-ka) .  (7) 

(I + ka) 

By substituting (4), (5) and (7) in (3) and equating s 
and s', we obtain the following relations 

k 
true eft 

o r  

and 

k 
I~true ~ ~eff + 2 AI 3 (8 )  

true eft r~ _~ r~ . (9) 

As discussed previously (Harada & Sakata, 1974), this 
indicates that within our approximation the position 
parameters r~ are not affected significantly even if the 
TDS correction is not applied to the data, but 
temperature parameters ~ are modified by the amount 
(k/2) Ap. It should be noted that the tensor form of 13~ 
obeys the site symmetry of the xth atomic location, 
while that of AI3 is independent of the atomic species 
and dependent only on the crystal system. Therefore, 
the directions of the principal axes of the thermal 
ellipsoids would, without TDS correction, be different 
from their true directions. This would have especially 
serious consequences for charge-density analyses. 

In (8) 13~, r"e is a quantity proportional to the mean- 
square atomic displacement due to the presence of 
phonons in the crystal. It is therefore conveniently 
expressed as a sum of two terms: contributions from 
acoustic phonons and from optic phonons. Thus, (8) 
may be rewritten as 

13true = ~true(acoustic) + [3true(optic), (10) 

where 

k 
[3true(acoustic) = [3err(acoustic) + ~ AI3 (11) 

if we restrict ourselves to the main contribution to AI3, 
which is due to the acoustic term. 

The components of AI3 and 13true(acoustic) in the 
notation of Harada & Pedersen (1968) and Harada & 
Sakata (1974) are defined by 

A~lrn = Z Z apl Oqm Tpq (12) 
19 q 

* Sakata  & Harada  (1976) cited 0.72 as the value of  k but it 
should read 0.74. 

flttmrUe(ac°ustic) = Z Z aptaqm T'p,7 (13) 
p q 
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with 

and 

k BT f (A-l)pqd3 
Tpq - (2703 q2 q (14) 

s c a r l  

volume 

T'  k 8 T j- (A-l)pq d3 
pq -  (27/:) 3 q: q, (15) 

Brillouin 
z o r l e  

where (A-~)pq is an element of a 3 x 3 symmetric 
tensor which is determined from the elastic constants 
and the direction cosines of the wave vector; q is the 
wave vector of the phonon and (Tpl is the element of a 
3 x 3 matrix used to transform the rectangular 
coordinate system in which the elastic constants are 
usually defined into the crystallographic coordinate 
system. The difference between Tpo and T~o is in the 
region over which the integral is taken: in Too the 
integral should be taken over the scan volume swept 
out in reciprocal space in the course of a measurement, 
while in T~q the integral is over the entire Brillouin zone. 
Substituting (12) and (13) in (11), we have 

k 
fl/~(acoustic) = flttrue(acoustic) - -~ Afltm 

= Z Z G ,  tGmT;q 1 - -  q . (16) 
v q 2 

Let us define 

Apq = (17) 
2 T~q 

for the correction to the p,q element of the tensor T'. 
Since Apq is almost independent of the element p,q, as 
will be proven in the next section, writing Apo as A, we 
have 

k 
flf2(acoustic) = fl~r"e(acoustic) -- ~ Afltm 

= (1 -- A) fl~m~Ue(acoustic). (18) 

3. Estimation of A~ 

The elements of the tensor A, which are correction 
terms for the corresponding elements of T',  are given 
by (17). Both the Brillouin zone and the scan volume 
swept out in reciprocal space in the course of a 
measurement may be approximated by spheres of 
equivalent volumes having radii qzB and qs, respect- 
ively. Replacing (A-l)pq by its average value ( ( A - l ) p q )  
and taking it out of the integrals in (14) and (15) [cf. 
Nilsson (1957)], we obtain 

k B T 
Tpq - 27t 2 ((A-l)pq) qs (19) 

and 

T'  k B T 
p q - -  4 ~  2 ((A-1)pq)qzB. (20) 

Hewat (1972) has suggested that the phonon 
dispersion relation co(q) is much better approximated 
by a sine curve than by the Debye model [which has 
been used in the derivation of (13)]. This is because the 
frequently made assumption that the shape of co(q) is 
not important for large q is not justified, i.e. the 
contribution of acoustic modes near the zone boundary 
to w T M  may be quite significant. The introduction of 
this dispersion relation results in an additional factor 
2 In 2 and (20) is therefore replaced by 

T '  k B T 
pq- 2~z 2 ((A-1)pq)qzBln2. (21) 

Since TDS occurs primarily from scattering by 
long-wavelength phonons, consideration of the shape of 
co(q) in conjunction with T is not necessary and so 
using (19) and (21) in (17) gives 

kqs 
A = (22) 

2 In 2 x qzB' 

where the subscripts on Apq are now superfluous. This 
result is quite important in that it provides a measure of 
the relative change of the temperature parameters 
resulting from correction for TDS. A significant feature 
of it is that it is independent of the elastic constants 
(and therefore the softness of the crystal). 

true The contribution of optic modes to w~ can be 
significant and the effect can be estimated by extending 
the first Brillouin zone to the second or higher zone (see 
Fig. 1) depending on the number of atoms in the unit 
cell. We may therefore replace qzB by q~B, the radius 
appropriate to the extended zone. In the case of two 
atoms per unit cell, for example, the volume of the 
extended Brillouin zone becomes twice that of the 
original zone and so q~B is 21/3qzn. Thus the final 
expression for the correction including optic effects is 

kqs 
A' = . (23) 

2 In 2 × q~B 

This correction term is easily calculated and depends, 
for a given crystal, only on the experimental technique 
used to scan the Bragg peaks, i.e. the mode of scan, the 
scan width, the size and shape of the detector aperture, 
the Bragg angle (0) and the wavelength of the incident 
radiation (2). Fig. 2 demonstrates the results for a small 
real cell (a) and a large real cell (b) with the same scan 
volume in each case. The magnitude of the relative 
effect on the temperature parameters is determined by 
the respective ratios qs/q'zB. For the small unit cell the 
relative effect on the temperature parameters is small, 
whereas for the large unit cell the relative effect is 
considerable. 
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KCI 
CdS 
CdSe 
BaF, 

Table 1. Details for comparison of  experimental and theoretical A' values for each of  four studies 

The  size o f  the detec tor  aper ture  is given with the width first in each case. 

Experimental conditions 
Scan 

Scan w i d t h  Detector 
mode (°0) aperture (°) 

w 2.5 1.5 x 1.5 
~o-20 3.0 2-0 x 1.5 
~-28 3.0 2.0 x 1.5 
~o-20 2.4 2.2 x 3.2 

Lattice 
parameters Results 

a (k) c (k) qs (A-') qzB (A-') A' d'ob s 3B (k 2) O/~obs (k2) 
6.290 - 0.1702 0.6197 0.116 0.105 0.22 0.20 
4.136 6.713 0.1991 0.8413 0.100 0.057 0.13 0.08 
4.299 7.010 0.1991 0.8081 0.104 0-072 0.15 0-11 
6. 196 - 0.1682 0.6291 0.099 0-066 0.08 0.05 

4. Comparison of experiment and theory 

Equation (23) was used to calculate A' for four 
different studies involving single crystals at room 
temperature as described below. The relevant experi- 
mental conditions under which diffracted intensities 
were recorded are given in Table 1. In all cases except 
BaF 2, Mo K~t characteristic X-radiation (2 = 
0 .7107,~)  was used. In the BaF 2 study the incident 
radiation was neutrons (2 = 1.038 A). The detector 
apertures were either square or rectangular and the 
dimensions given in Table 1 are the angles subtended 
by the aperture at the crystal. 

O P T I C  

A P P R O X I M A T I O N  

~ A C O U S T I C  

B R A N C H  

0 nla 2nla q 

Fig. 1. Optic and acoustic branches of the dispersion relation for a 
diatomic linear lattice, showing extension of the zone. The lattice 
parameter is a. 

,. b 

REAL ~- a--.4 
SPACE * [-""] 

SCAN 
~---2n/a----4 VOLUME e. - • 

, @ 

" - _ . " ~ 2 q s ~ "  

-~2Gt-- ~2qz~ 

I 2 qza ' 

(a) (b) 
Fig. 2. Demons t r a t i on  o f  the relative effects o f  T D S  on the 

t empera tu re  pa rame te r s  for:  (a) a small unit cell and (b) a large 
unit cell. The  scan vo lume  is the same  in both cases. 

The scan volume can be calculated using one of the 
formulae given by Sakata & Harada (1976), which 
depend on 0 and result in qs being dependent on 
sin t/3 20, a slowly varying function in the region of 
interest. The values of qs are obtained by setting O = 
45 o and are given in Table 1, along with values of qzs, 
A' and Aob s (the observed value of A'). The lattice 
parameters used in the calculations of qzB were those 
of: Donnay & Donnay (1963) for KCI and BaF2; 
National Bureau of Standards (1955) for CdS; Natio- 
nal Bureau of Standards (1957) for CdSe. In all cases 
we set k = 0.74. 

The calculations for KC1 are based on the study by 
James & Brindley (1928), the results of which have 
been used more recently [e.g. Kashiwase (1965) and 
Willis (1969)]. The experimental conditions listed in 
Table 1 for KC1 are those used by Willis (1969) [see 
also Nilsson (1957) and Cooper & Rouse (1968)]. The 
value of A' for KCI represents an increase in the 
temperature parameter of approximately 13% as a 
result of including TDS corrections. This is in excellent 
agreement with the findings of Nilsson (1957), who 
obtained a temperature-parameter value of 1.885 A 2 
after correcting the data for the contributions from 
TDS, calculated on the basis of an infinite slit height for 
the detector (cf 1-688 A 2 originally). It should be noted 
that a slight error is involved in this calculation of A' 
because James & Brindley's (1928) background 
measurements were not recorded at the ends of the 
scans. 

The calculations for CdS, CdSe and BaF 2 are based 
on studies by Stevenson, Milanko & Barnea (1983), 
Stevenson & Barnea (1983) and Cooper, Rouse & 
Willis (1968), respectively. In these three cases there is 
approximate agreement between A' and A'bs. The value 
of A'bs for BaF 2 is based on the comparison of two 
methods used to calculate TDS correction factors 
(Willis, 1969). 

By using (3), (5) and (7) it is possible to obtain the 
following approximation [see, for example, Willis 
(1969)]: 

ka = 2(6B) sin 2 O/X 2, (24) 

where 6/~ is the change in the 'overall' temperature 
parameter, as a result of correcting for TDS effects. 
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Table 1 also lists values of fiB and ~Bous, the changes in 
the 'overall' temperature parameters, in accordance 
with A' and A;bs respectively. In carrying out a linear 
least-squares fit of the CdS TDS correction factors 
(Merisalo & Kurittu, 1978) according to (24), the value 
of 6/~ is found to be approximately 0.10 A 2 (el t~B and 
6/~ob s in Table 1). 

We can rewrite (24), in terms of d',  as 

kct = 2B TM A' sin 2 0/21 = 2BefrA ' sin 2 0/[22(1 - A')], 

(25) 

where /~err. and ~true are the 'overall' temperature 
parameters before and after correction for TDS, 
respectively. Equation (25) can be used to obtain 
approximate values of the TDS correction factors 
without knowing the elastic constants, whose effect is 
included in the temperature parameters. The accuracy 
of such correction factors is largely dependent on the 
accuracy of A' and so a more rigorous calculation than 
is given by (23) is recommended. Accurate cal- 
culations of TDS correction factors can involve large 
amounts of computing time (to evaluate surface or 
volume integrals numerically for each reflection), 
especially for large data sets. Calculation of a small 
number of these correction factors at a variety of Bragg 
angles may, after comparison with (25), yield a suitable 
value of A' with which (25) could be used to obtain the 
other correction factors [a similar approach has been 
used by Willis (1969)]. 

It is worthy of note that, within the above formalism, 
it is possible to derive approximate values of tempera- 
ture parameters, which can be given by 

Btm ~__ 8k n T((A-1)tm) q~a In 2. (26) 

As an example, the values of ((A-~)tm) were evaluated 
by numerical integration using the TDS correction 
program of Sakata, Stevenson & Harada (1983) for 
CdS. The elastic constants used were those of Berlin- 
court, Jaffe & Shiozawa (1963). The calculated value 
of the 'overall' temperature parameter for CdS was 
1.04 A 2, e f  1.345 (4)A 2 from experiment (Stevenson, 
Milanko & Barnea, 1983). 

The main factors which limit the usefulness of the 
foregoing approach are: the approximate way in which 
the Brillouin zone is extended to include the effects of 
optic modes, the approximations to the shape of the 
phonon dispersion curves (particularly in the vicinity of 
the Brillouin zone boundary) and the use of spherical 
volumes for the Brillouin zone and scan volume. In 
particular, Table 1 shows that Aob s is lower than A' in 
each case. This trend is more pronounced if the value of 

* It should be noted here that B is defined in the unit of A 2 while 
the elements of [3 in (6) are dimensionless quantities [see, for 
example, Willis & Pryor (1975)]. Both B and [3 are, however, used 
as so-called 'temperature parameters', although their definitions are 
slightly different. 

Aob s for KC1 is replaced by a value based on 6Bob s = 
0.16 A 2 (Cooper & Rouse, 1968), i.e. Aobs = 0.087. 
This systematic discrepancy may be characteristic of 
one or more of the limitations mentioned above. 

5. Discussion and conclusions 

The agreement between theory and experiment for the 
four cases presented in the previous section is reason- 
able when the nature of the approximations made in 
deriving (23) are considered. Clearly, the use of (23) 
requires further testing, on a variety of crystals, in 
order to determine its range of applicability and 
usefulness. Such a test, for a crystal and experimental 
conditions where the relative effect of TDS on the 
temperature parameters is smaller, would be par- 
ticularly timely, since, in all the examples considered 
thus far this relative effect is quite significant. Unfor- 
tunately, suitable studies where all necessary details are 
given, including the change in the derived temperature 
parameters as a result of correcting for TDS and the 
experimental conditions under which intensities were 
recorded, are few. 

The use of (25) and (23) serves as an indication of 
the size of the TDS corrections and the relative effect 
such corrections have on the derived values of 
temperature parameters. The validity of these equations 
depends on a number of factors including the shapes of 
the Brillouin zone and scan volume and the contri- 
bution of optic modes to the temperature parameters. 

Equation (23) indicates the importance of applying 
TDS corrections in all cases, since their relative effect 
on temperature parameters is primarily dependent on 
the experimental conditions under which data is 
collected and not necessarily on the softness of the 
crystal under investigation. 
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Abstract 

The theory of X-ray diffraction by ideal crystals under 
the conditions when the incident and diffracted beams 
are directed at small angles to the entrance surface of a 
crystal has been developed. Besides the diffracted wave 
propagating inside the crystal (i.e. Laue-case diffrac- 
tion) there are two specular reflected waves arising 
from incident and diffracted waves respectively. Such a 
diffraction scheme has been recently put into practice 
[Marra, Eisenberger & Cho (1979). J. Appl. Phys. 50, 
6927-6933]. It is found that at small glancing angles of 
incidence there exist directions in which the intensity of 
the reflected diffracted wave is close to the incident 
wave intensity, while both the specular reflected wave 
and diffracted wave intensities are close to zero. The 
analytical expressions are obtained for the diffraction 
curve shape. It is shown that for diffraction curve 
measurements high collimation through the glancing 
angle of incidence of X-rays on the crystal, q~, is 
sufficient. There is no need to provide collimation 
through parameter a denoting deviation from exact 
Bragg conditions. Owing to the rigid relation between 
a, q~ and the angle of emergence of the reflected dif- 
fracted wave from the entrance surface of the crystal, ~ ' ,  

~2 ~ (~ + ¢~t2, 

when measuring the intensity of the reflected diffracted 
wave as a function of O, the intensity is obtained as a 
function of a. Measurement of ~ '  with the accuracy of 
about 30" corresponds to accuracy through a of about 

0567-7394/83/020207-04501.50 

0.1". These facts sufficiently simplify the performance 
of experiment and open wide prospects for studies of 
crystal structure of thin subsurface layers with unique 
accuracy. 

1. Introduction 

The use of extremely asymmetric X-ray diffraction 
techniques requires the account of the specular reflec- 
tion phenomenon. This problem has been studied in 
detail for both Bragg-case (Farwig & Schfirmann, 
1967; Kishino, 1971; Rustichelli, 1975) and Laue-case 
diffraction (Farwig & Sch/irmann, 1967; Kishino, 
Noda & Kohra, 1972; Bedynska, 1973, 1974; H~irtwig, 
1976, 1977). In the Laue case the specular reflection 
effect would essentially increase the intensity of 
anomalously transmitted waves in the T beam. In the 
Bragg case a decrease in penetration depth due to 
specular reflection leads to an appreciable increase in 
the integral reflection coefficient with the position and 
shape of the Bragg peak being essentially changed. 
Consideration of the specular reflection phenomenon 
does not appear to be restricted only to asymmetric 
diffraction schemes. 

A new diffraction scheme has been recently 
described (Marra, Eisenberger & Cho, 1979). In this 
scheme, the incident-beam glancing angle was chosen 
in such a way as to allow the Laue-case diffraction 
condition to be realized. On the other hand, both the 
incident and diffracted beams made small angles with 
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